Loading...
机构名称:
¥ 1.0

量子纠缠是实施光学量子信息过程(QIP)[1-7]的必不可少的资源。传统上,两类的方法是通过根据波粒子二元性来利用两个不兼容的光方面的一个,并通过利用两个不相容的光方面的一个并行培养。conto,这些发展通过利用了有限维度(例如photon和光的极化)[1-4]或连续变量(CV)状态(例如,有效的希尔伯特空间)(例如,二维式希尔伯特空间)(例如,效果)(例如,五个)状态(例如,二维的希尔伯特空间(5 fimentientional)的含量(例如,均匀的希尔伯特空间),通过使用任何一个离散变量(例如photon数量和光极化),从而导致了两个不同的方向。在实践中,两个编码都显示了各自的贴生,但也暴露了个体弱点。对光子丢失的关注点较少,涉及单个光子的DV协议通常几乎具有单位有限态,但依赖于概率实现和高效的单光子检测器。相比之下,使用电磁场的正交组件的CV替代方案庆祝明确的状态歧视,无需进行操作和完美的同源性检测效率,但由于其偶数,因此从光子损失和固有的低状态损失和固有状态损失中获得了SUISCHER,因此由于其耦合而产生。最近,No-Tablee治[8-22]已致力于利用两种方法,以克服固有的个体局限性。在统一的混合体系结构中集成DV和CV技术的进展已经掌握了分布和互连光学DV和CV量子状态(或Qubits)的能力。一个人可以设想两个编码之间的异质量子网络需求传递。因此,这些混合技术为实现可扩展的QIP和量子通信提供了新的光。

arxiv:2105.04602v1 [Quant-ph] 2021年5月10日

arxiv:2105.04602v1 [Quant-ph] 2021年5月10日PDF文件第1页

arxiv:2105.04602v1 [Quant-ph] 2021年5月10日PDF文件第2页

arxiv:2105.04602v1 [Quant-ph] 2021年5月10日PDF文件第3页

arxiv:2105.04602v1 [Quant-ph] 2021年5月10日PDF文件第4页

arxiv:2105.04602v1 [Quant-ph] 2021年5月10日PDF文件第5页

相关文件推荐

2021 年
¥1.0
2021 年
¥12.0